Rapid Development of RapidMiner
Extensions

Katharina Morik, Jan Czogalla
TU Dortmund University, Department of Computer Science
Joseph-von-Fraunhofer Str. 23, 44221 Dortmund, Germany
{katharina.morik }{jan.czogalla}@tu-dortmund.de

Abstract

Developing RapidMiner extensions is helpful for adapting existing
toolboxes for one’s needs. While using a simplified extension for teaching
purposes, we encounter some practical obstacles that make debugging
cumbersome. Hence, we introduce a RapidMiner extension that makes
it easier for extension developers to integrate and test new features.

1 Introduction

RapidMiner offers opportunities to develop data mining processes without pro-
gramming. It is one of the first interactive analytics programs. This is a most
striking difference to other toolboxes such as MatLab or R. It allows users to
rapidly apply data mining processes to their fields of interest, who are not pro-
grammers — “the masses” [2]. Data mining courses at universities may address
students from business, science, or engineering, who do not intend to do their
research in data analysis, but will use RapidMiner in order to gain insight into
their data and the stories the data tells them [1].

Some courses, however, still need to teach in-depth knowledge about ma-
chine learning, data mining, or general analytics. These are for students, who
will push the state of the art further and will become data scientists, data
miners, or learning algorithm engineers. They are intended to carefully regard
the links between theoretical results and algorithmic formalization. Actually,
some problems that are hot topics in research only become clear after some
experience with writing efficient programs. Hence, it is important that stu-
dents implement their own learning algorithms, even if such implementations
already exist. It will turn their attention to some practical problems, that
have been solved in the last decades and they will appreciate these solutions.

Moreover, they would not forget the algorithms after the examination, because
they have re-invented them on their own.

To get students started with data mining implementation exercises, the
authors provide them with a RapidMiner extension with blank operators, i.e.
operators that do nothing but have all constraints and frames needed to con-
centrate on implementing the specified algorithms. In particular, variants of
top-down induction of decision trees, k-Means, FPgrowth, and lossy counting
have been implemented by students using this extension. They could use all
comfort of RapidMiner to read in data, preprocess them, run the algorithms
and inspect results, while at the same time writing their own code. Overall,
this has been very successful. However, operator development and testing are
intertwined, and as a result students had to compile and package the exten-
sion multiple times to tweak their implementation. We see a deficiency in this
process that all extension developers are facing.

1.1 The Problem of Development and Test Cycles

Students programming their own operators within RapidMiner by writing code
into the prepared blank classes have to stick to the same cycle if they want to
edit something:

1. close RapidMiner

2. search for the operator/class to be changed
3. edit the code

4. rebuild extension

5. restart RapidMiner

Besides the fact that rebuilding an extension and restarting RapidMiner
costs some time, it is also unhandy. Since RapidMiner and its extensions are
written in Java, there are several ways to monitor the execution of the running
program. But even if RapidMiner is started in a debug mode and the relevant
classes can be followed by this debugger, it is not possible to change or add
method names and attributes in a class at runtime, due to the limitations of
the Java Virtual Machine (JVM). This might be okay for fixing small bugs,
but for testing parts of an operator again and again while developing it, or
even adding new operators to an extension, this is much more time consuming
than it has to be.

So how can we avoid this behaviour? Is there a way to rebuild extensions
and deploy them anew in RapidMiner? At runtime? There certainly is. Each
extension has its own Java class loader and if we were to replace this class
loader and all objects loaded by it, we are easing development and testing.

In other environments, e.g. web deployment of Java Apps, there are already
(proprietary) solutions like JRebel/LiveRebel! that address a similar problem.
In this paper, we present our approach to this problem.

2 Supporting Extension Developers

Instead of the cycle shown above, we want another procedure of redeployment,
i.e. we want to improve the process of applying changes of an extension to
RapidMiner at runtime. This asks for a comfortable interaction of RapidMiner
and the Integrated Development Environment (IDE). By IDE we refer to any
program used by developers to create extensions and operators for Rapid-
Miner. If a developer wants to change some operator behaviour, the following
procedure is desired:

1. A right click on an operator opens a pop-up menu which contains an
option to edit the source code.

2. The IDE comes to the foreground, showing the source code of that op-
erator.

3. The developer edits the operator and saves changes.
4. The developer requests to redeploy the changed code using a menu.

5. After building the extension and redeploying it, RapidMiner comes to
the foreground again.

6. The process runs again, and the developer is satisfied with the changes
- or not and starts over again.

There are some more things to consider that users probably will not see, but
are nevertheless important. To completely remove all (possibly faulty) objects
created by a specific extension, it is essential to not only remove operators
and their descriptions from a running RapidMiner application, but also to
exchange any contribution made to the GUI and other enhancements.

Since not only students programming operators for learning purposes face
these problems, but also extension developers in general, we have decided
to pack this new functionality into a separate extension. We inspected the
RaidMiner code and made some API modifications where they were necessary.

To model the desired behaviour, we need an extension for both RapidMiner
and the IDE. At this point we decided to go for Eclipse? as the IDE to use,
since RapidMiner itself is developed in Eclipse and therefore it comes with an

1
2

www.zeroturnaround.com
www.eclipse.org

Eile | Edit| Process Tools View Help MLV
2 Undo Strg+Z Eg E rj @
= YR NE)
tor Info. ess z

F1 = L
stig-E ~ & B Process »

qwn | Show Operator nfo. F1
£ Enable Operator Sug+E

© Rename F2

2 Replac Operator

(5 Save as Building Block

Focu strgex

— 3 Cony stro-C

2 3 [aste strgv
Ent

F2
Strg+!

NI

Strg+x.

sugec Umschalt+F7

7

EEEE

Stugev
Entr
Umschaltsf 7
B Breakpoint Ater 7

2% ANl Breakpoints (Debug Mode)

% Al Breakpoints (Debug Hode)

Figure 1: The edit source code action in the edit menu (left) and context menu
of an operator (right)

Eclipse project file. Another reason is that among Java IDEs, Eclipse is very
popular. This does not restrict our approach, because the most important part
was to implement the redeploying process in RapidMiner, which is independent
from the particular IDE used.

We will now discuss the steps we took to create these extensions for Rapid-
Miner and Eclipse and will look at implementation details in the next subsec-
tions.

2.1 Extending RapidMiner for Extension Development

Some GUI components are needed to give developers control over this new
redeploy cycle. The developer needs to edit or view the code of one particular
operator. This requires some interprocess communication which is realized
using Java RMI, the native Java implementation of Remote Method Invoca-
tion, which allows to use remote Java objects, e.g. in another JVM, in Java
code as if they were local. This eases interprocess communication, although
it adds some extra exception handling. The user can edit an operator from
the already existing RapidMiner menus: you can either activate it from the
main menu bar in the edit section or from the context menu of an operator or
via the short cut Ctrl+Alt+E (see figure 1). RapidMiner then retrieves the
class associated with the selected operator and tells the IDE via Java RMI to
open the source code belonging to this class. If this is possible, RapidMiner is
minimized to the task bar to bring the IDE to the foreground.

The functionality of redeploying is invisible to the RapidMiner user. It is
invoked from the IDE. The communication from IDE to RapidMiner again
works with Java RMI. It is possible to mark extension files (which are Java
archives with the suffix “jar”) for copying if the operating system blocks the
current extension file and prevents replacing. To replace the modified exten-
sions, some modifications to the Plugin-API had to be made.

Each RapidMiner extensions has an initialization class which has four

methods to initialize the extension. These methods are invoked during the
start-up of RapidMiner to add GUI components, add special repositories and
so on. For each of these extensions there will be a Plugin object at runtime,
holding the id, name and initialization class of the extension among other
information.

If an extension should be replaced, it first has to be completely removed
from the RapidMiner context, allowing the JVM to clean up any outdated
object. That implies that with the new version all the initialization methods
need to be invoked again. Without removing everything that was added by the
extension first, RapidMiner would have two versions available for everything
this extension contributes.

For unregistering the extension, a method was added to the API that would
remove that Plugin object from the context, and further methods were intro-
duced to the initialization class that would take care of GUI components and
other objects created and held by this extension. Those are so called tear-down
methods, and their purpose is to remove the contributions made and leave
RapidMiner as clean as if the extension was not installed. For these actions
to succeed, developers have to take responsibility when they implement the
initialization class by concentrating their attention to these tear-down meth-
ods as well as the initializing methods. When the Plugin object is removed
from the context and the tear-down methods are done, the class loader of the
extension is closed and the new version can be loaded from the very same jar
file.

To re-register the modified extensions, Plugin objects now have two meth-
ods to initialize themselves after reloading, such that (i) all operators and de-
scriptions can be loaded, and (ii) GUI elements and enhancements are loaded,
so dependencies to other extensions can be fulfilled.

The IDE will deliver a list of modified extensions and our development
extension then performs some additional steps for keeping RapidMiner con-
sistent. The current RapidMiner process is saved and then removed from the
context. Hence, changes made can take effect. Code that relies on a modi-
fied extension is marked to be redeployed too, thus keeping the dependency
graph of the extensions consistent. After removing all modified and so marked
classes and methods, the extensions whose jar files need copying are copied to
the extension directory. Then, the extensions are recreated, initialized and reg-
istered with RapidMiner again. Finally, the process is reloaded with possibly
new operators.

2.2 Modifying the IDE

For Eclipse, the extension mainly consists of internal listeners. We need to
have a look at the projects in the current workspace, check if RapidMiner was
started and if so wait for it to request to view the source code of an operator.

And of course we need a menu to give developers the opportunity to redeploy
any modified extension.

For the extension to be active, there has to be the RapidMiner project
and at least one RapidMiner extension project in the workspace. The listener
checks on start-up if these conditions are fulfilled, but will make sure any newly
added or modified projects are observed, to find out if they may be relevant. It
also keeps track of the extensions that get changed and need to be redeployed.

If RapidMiner has been started from Eclipse, a listener waits for Rapid-
Miner to send a class name via Java RMI to open the corresponding source
code if possible. The specified class therefore must be present either in Rapid-
Miner itself or in any extension in the workspace. If that is the case, the source
code of the class is opened in a Java editor. If the class could not be found in
the workspace, RapidMiner is told so and will produce an error dialog.

For the rebuilding of the modified extensions, a menu is created to let
the developer decide, when to build and redeploy the extensions. As the
extensions (and RapidMiner, too) are Ant projects®, it takes some time to
run the corresponding processes. If one of the observed extension projects
was changed, it is stored in a separate list. For the purpose of rebuilding,
this list is processed one by one due to the fact that only one Ant build can
be run at a time. The Ant build for each extension will be run and checked
for success. The only failure allowed is the final moving of the new jar file
to the extension directory of RapidMiner. If this moving fails, the associated
extension is marked for copying through Java RMI as mentioned before.

If RapidMiner is running after all extensions are built, Eclipse initiates
the actual redeploying in RapidMiner via Java RMI, sending a list with the
successfully rebuild extensions. If this was successful as well, RapidMiner
is restored from its minimized state, hiding the IDE again and showing the
reloaded process.

3 Conclusion

Even if RapidMiner is not executed, our program will take care of building
extensions so that users do not have to build those themselves. As there can
only be one Ant build in a JVM at a time, the most important gain of our
approach is saving time and action needed to apply changes to RapidMiner
at runtime. There is no longer a need to restart RapidMiner after changing
or even adding some operators. Another advantage is to have a look into the
RapidMiner source code. If you need to know what a particular RapidMiner
core operator does, simply browse the source code via the ”edit source code”
action. This gives an easy access to the source code and is a further step into

3 Apache Ant (www.ant.apache.org) is a scripting tool to e.g. build Java applications.

the direction of interactive data mining. Finally, our approach is the basis for
loading new extensions installed via the marketplace directly into RapidMiner
without a restart. This is supposed to speed up the sharing of operators in
the RapidMiner community.

Acknowledgements The authors want to thank Rapid-I for merging the
patch that made this development extension possible. Thanks also go to the
students at LS8 who have helped to get rid of some quirks in the early stage
of the extension.

References
[1] Markus Hofmann and Ralf Klinkenberg, editors. RapidMiner 5 — Use Cases.
2013.

[2] Matthew A. North. Data Mining for the Masses. Global Text Project Book,
2012.

